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Abstract. In this paper we extend results of Blokh, Bruckner,
Humke and Smı́tal [Tran. Amer. Math. Soc. 348 (1996), 1357–
1372] about characterization of ω-limit sets from the class C(I, I) of
continuous maps of the interval to the class C(S, S) of continuous
maps of the circle. Among others we give geometric characteri-
zation of ω-limit sets and then we prove that the family of ω-limit
sets is closed with respect to the Hausdorff metric.

1. Introduction

Continuous maps of the interval and continuous maps of the circle
have many properties in common. Some of them are proved in [6].
In this paper we extend results proved in [3] from the class C(I, I)
of continuous maps of the interval to the class C(S, S) of continuous
maps of the circle by using the same technique used in [6]. Other re-
sults concerning continuous maps of the circle can be found in [1] or [5].

Throughout the paper, the symbols I and S denote the unit interval
[0, 1] and the circle {z ∈ C; |z| = 1}, respectively, and X denotes either
I or S. Denote by Sb the circle cut at a point b ∈ S, i.e. Sb = S \ {b}.
Let e : R → S be the natural projection defined by e(x) = exp(2πix).
Note that the map ẽ : (v, v + 1) → Se(v) obtained by restricting e
to the interval (v, v + 1), is a homeomorphism. It is clear that if we

define a map hv(x) := e(x + v), where v ∈ R, then h̃v := hv|(0,1) is a
homeomorphism from (0, 1) onto S \ {e(v)} (see Lemma 3.1.3 in [1]).

We say that h̃v(x) ≤ h̃v(y) whenever x ≤ y. For an interval A ⊂ Se(v)

a point a is called the left endpoint, resp. the right endpoint, of A if
a ≤ x, resp. x ≤ a, for every x ∈ A. Recall that the trajectory of a
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point x under a map f is the sequence {fn(x)}∞n=0, where fn is the n-th
iteration of f . The set of limit points of the trajectory of x is called
ω-limit set and we denote the set by ωf (x). A set {U0, . . . , Un−1} of
mutually disjoint intervals is called a cycle of intervals if f(Ui) = Ui+1

for i = 0, 1, . . . , n − 2 and f(Un−1) = U0. The map f is transitive if
for every two non-empty open sets V, W there is a positive integer n
such, that fn(V )∩W 6= ∅. Two maps f : Y1 → Y1 and g : Y2 → Y2 are
topologically conjugate if there exists a homeomorphism ϕ : Y1 → Y2

such that ϕ ◦ f(x) = g ◦ ϕ(x) for any x ∈ Y1. For more terminology
see standard books like [1] or [2].

Now we introduce some notions used in [3] and modified for maps
from C(S, S). We say that a set A ⊂ S is T -side or T -unilateral
neighborhood (T means either “left” or “right”) of an x ∈ S if the set
A is a closed interval and the point x is T endpoint of the set A.
Let U = U0 ∪ . . . ∪ UN−1 be a union of pairwise disjoint non-
degenerate closed intervals and f ∈ C(S, S). For any set K ⊂ U
let fU(K) = f(K) ∩ U (this may be empty). Inductively define
fn

U(K) = fU(fn−1
U (K)). Define K̃ ≡ K̃(U) =

⋃∞
i=1 f i

U(K); although K̃

depends on U , to avoid convoluted notation we use K̃ whenever the
set U is evident. Let A ⊂ S be a closed set and x ∈ A. We say that
a side T of a point x is A-covering if for any union of finitely many
closed intervals U such that A ⊂ Int(U) and any closed T -unilateral
neighborhood V (x) there are finitely many components of Ṽ (x) such
that the closure of their union covers A. If T is an A-covering side of x
then any T -unilateral neighborhood V (x) is also said to be A-covering.
We call the set A locally expanding according to the map f if every
x ∈ A has an A-covering side.

The main theorems of this paper are the following.

Theorem 1.1. Let f be a map in C(X, X). A closed set A ⊂ X is an
ω-limit set if and only if it is locally expanding.

Theorem 1.2. Let {ωn}∞n=1 = {ωf (xn)}∞n=1 be a sequence of ω-limit
sets of a continuous map f ∈ C(X,X) and let a point a have a side
T , such that for any T -unilateral neighborhood V of a, there exists a
positive integer N such that for each n ≥ N , the orbit of xn enters V

infinitely many times. Then
⋂∞

k=1

⋃∞
n=k ωn is an ω-limit set.

Theorem 1.3. Let f be a map in C(X, X). Then the family of all
ω-limit sets of f endowed with the Hausdorff metric is compact.
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2. Proof of the main theorems

Let b ∈ S and f ∈ C(S, S). We denote by e−1(b) the point x ∈ [0, 1)
such that e(x) = b. In the rest of the paper by h we denote the map

h̃e−1(b) whenever the point b ∈ S is evident and by A∗ we mean the

preimage of the set A ⊂ Sb under the map h̃e−1(b). Denote by S the set
S \

⋃∞
n=0 f−n(b). Now we can define a map f ∗ ∈ C(S∗, S∗) as

f ∗ := h−1 ◦ f ◦ h|S∗ .
The map f ∗ is defined only on the subset S∗ of the interval (0, 1), but
we overcome this difficulty using Lemma 2.1.

Lemma 2.1. Let f ∈ C(X, X) and A ⊂ X be a locally expanding set
according to the map f . Then the set A is invariant, i.e. f(A) ⊂ A.

Proof. In the case when X = I the lemma is proved in [3] (Lemma 2.5).
It remains to consider the case X = S. The case A = S is trivial. Let
A ⊂ Sb, x ∈ A and f(x) 6∈ A. Then there exists a union of finitely
many intervals U = U0∪. . .∪Un−1, U ⊃ A such that for any sufficiently
small neighborhood V of x we have f(V )∩U = ∅. The definition of Ṽ
implies that Ṽ = ∅ which is a contradiction. �

Lemma 2.2. A set A ⊂ S is a T -side of a point x ∈ S if and only if
the set A∗ is a T -side of the point x∗.

The proof is omitted.

Lemma 2.3. If the whole circle S is locally expanding with respect to
a map f ∈ C(S, S) then f is transitive.

Proof. Take two nonempty open sets V, W . Since a point x ∈ Int(V )
has S covering side then Ṽ = S and hence there is a positive integer n
such that fn(V )∩W 6= ∅. This proves that the map f is transitive. �

Lemma 2.4. Let f be a map in C(S, S). A closed set A ⊂ Sb is locally
expanding according to the map f if and only if the set A∗ ⊂ (0, 1) is
locally expanding according to the map f ∗.

Proof. First assume that the set A∗ is locally expanding. Hence the
sets A∗, A are closed and by Lemma 2.1 the set A∗ is invariant and
A∗ ⊂ S∗. Take a point x ∈ A. Since the set A∗ is locally expanding the
point x∗ has an A∗-covering side T ∗. By Lemma 2.2 the set T is a side
of the point x. Take a union of finitely many closed intervals U ⊂ Sb

such that A ⊂ Int(U) and any closed T -unilateral neighborhood V (x).
Using the assumptions there are finitely many components of W̃ where
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W = V (x)∗ such that the closure of their union covers A∗ and clearly
W̃ ⊂ (0, 1). Hence the set Ṽ (x) has finitely many components such
that the closure of their union covers A as well. Thus the set A is
locally expanding.

The proof of the converse is analogous. �

Lemma 2.5. A set A ⊂ Sb is an ω-limit set of the map f ∈ C(S, S) if
and only if the set A∗ is an ω-limit set of the map f ∗.

Proof. First consider the closed set A ⊂ Sb to be an ω-limit set. There
is a point x0 ∈ S such that ωf (x0) = A. If there are two positive
integers m1 < m2 such that fm1(x0) = fm2(x0) = b then the ω-limit
set A is finite and b ∈ A which is a contradiction. We may assume
that fn(x0) 6= b for every positive integer n (in the case when there
is just one positive integer m such that fm(x0) = b we replace x0 by
fm+1(x0)) and thus {fn(x0)}∞n=0 ⊂ S. Hence ({fn(x0)}∞n=0)

∗ ⊂ S∗ and
we have ωf∗(x

∗
0) = (ωf (x0))

∗ = A∗.
The proof of the converse is analogous. �

Before stating the next lemma, let us recall one of Blokh’s results
from [4].

Proposition 2.6. Suppose that f ∈ C(S, S) is a transitive map. Then
there is a positive integer m, such that S =

⋃m−1
i=0 Ki, where all the Ki

are connected compact sets, Ki ∩Kj is finite for i 6= j, f(Ki) = Ki+1,
i = 0, 1, . . . ,m− 2, f(Km−1) = K0 and two cases are possible:
(1) P (f) 6= ∅; then fmq|Ki

is transitive for any i = 0, 1, . . . ,m− 1 and
any positive integer q,
(2) P (f) = ∅; then m = 1, K0 = S and f is conjugate to an irrational
rotation.

Lemma 2.7 (Lemma 2.6 in [3] for C(I, I)). Let f be a map in C(S, S)
and A ⊂ S be a locally expanding set according to the map f with non-
empty interior. Then A is a cycle of intervals and f |A is transitive.

Proof. Suppose that A = S. By Lemma 2.3 the map f is transitive and
by Proposition 2.6 the set A must be a cycle of intervals. Suppose that
A ⊂ Sb. Since A is locally expanding then by Lemma 2.1 A ⊂ S and by
Lemma 2.4 the set A∗ ⊂ S∗ is locally expanding. By Lemma 2.6 in [3]
the set A∗ is a cycle of intervals A∗0, . . . , A

∗
n−1 and f ∗|A∗ is transitive.

The map h is a homeomorphism and hence the set A = h(A∗) =
h(A∗0) ∪ . . . ∪ h(A∗n−1) and

f(Ai) =
(
h ◦ f ∗ ◦ h−1|S

)
(Ai) =

(
h ◦ f ∗ ◦ h−1|S

)
(h(A∗i )) =

h(f ∗(A∗i )) = h(A∗i+1) = Ai+1,
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where Aj = h(A∗j) and j is taken modulo n. This means that A is a
cycle of intervals. It remains to show that f |A is transitive when A ⊂ Sb.
Take two open sets V, W ⊂ A. Then the sets V ∗, W ∗ ⊂ S∗ are open
sets and so there is a positive integer n such that (f ∗)n(V ∗)∩W ∗ 6= ∅.
Hence

fn(V ) ∩W = (h ◦ (f ∗)n ◦ h−1|S)(V ) ∩W = h((f ∗)n(V ∗) ∩W ∗) 6= ∅.

�

Lemma 2.8 (Lemma 2.7 in [3] for C(I, I)). Let f be a map in C(S, S)
and A ⊂ S be a locally expanding or an ω-limit set. Then f(A) = A.

Proof. The case of an ω-limit set is trivial and well known. Let A be a
locally expanding set. When A = S then f is transitive (Lemma 2.3)
and the lemma is proved. It remains to consider the case when A ⊂ Sb.
By Lemma 2.1 A ⊂ S, and by Lemma 2.7 in [3] we have f ∗(A∗) = A∗.
Clearly

f(A) =
(
h ◦ f ∗ ◦ h−1|S

)
(A) = h(f ∗(A∗)) = h(A∗) = A.

�

We continue by proving the main theorems.

Proof of Theorem 1.1. In the case when X = I the theorem is proved in
[3] (Theorem 2.12). It remains to consider the case when X = S. First
we show that if A = ωf (x) is an ω-limit set then A is locally expanding.
In the case A ⊂ Sb, A∗ is an ω-limit set by Lemma 2.5, hence A∗ is
locally expanding (see Theorem 2.12 in [3]) and by Lemma 2.4, the set
A is locally expanding as well. It remains to consider the case when
A = S. Since A is an ω-limit set and it has a non-empty interior, A is
a cycle of intervals (see Theorem 1.1 in [6]). From this it follows that if
W ⊂ A is an interval, then W has a dense orbit in A and hence there is
an n ∈ N such that fn(W ) ∩W 6= ∅. Therefore the union

⋃∞
i=1 f i(W )

is dense in A and has finitely many component intervals. As this is
true for every such interval W , it follows that A is locally expanding.

Assume that A is locally expanding. In the case A ⊂ Sb we can again
prove the theorem by using our Lemmas 2.4 and 2.5, and Theorem 2.12
in [3]. It remains to consider the case when A = S. By Lemma 2.7 the
set A is a cycle of intervals and f |A is transitive. Thus the set A is an
ω-limit set. �

Proof of Theorem 1.2. In the case when X = I the theorem is proved
in [3] (Theorem 3.1). It remains to consider the case when X = S. We
will prove this in several steps.
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Case 1. Assume that
⋂∞

k=1

⋃∞
n=k ωn ⊂ Sb. Using our Lemma 2.5 and

Theorem 3.1 in [3] we get that the set
⋂∞

k=1

⋃∞
n=k ω∗n is an ω-limit set.

By Lemma 2.5 the set
⋂∞

k=1

⋃∞
n=k ωn is an ω-limit set as well.

Case 2. Next assume that
⋂∞

k=1

⋃∞
n=k ωn = S. Then it suffices to

show that f is transitive. Take two non-empty open sets V, W ⊂ S and
assume without loss of generality that they are disjoint.

Subcase 2.1. If there is an m such that ωm intersects both V and W
we are done since there are positive integers p < q such that fp(xm) ∈ V
and f q(xm) ∈ W and consequently, f q−p(V ) ∩W 6= ∅.

Subcase 2.2. If there is no such m, let {ωni
}∞i=1 be the sub-

sequence of {ωn}∞n=1 consisting of ω-limit sets intersecting V . Then

ωV =
⋂∞

k=1

⋃∞
i=k ωni

⊂ Sb for any b ∈ W , hence, according to the first
part, ωV = ωf (v) is an ω-limit set, and a ∈ ωf (v) is its cluster point
from the side T . Similarly, for some w, ωf (w) is an ω-limit set inter-
secting W and such that a is its cluster point from the side T . Let
A = ωf (v) ∪ ωf (w).

Subcase 2.2.1. If A 6= S then A ⊂ Sb for some b. We apply the result
by Sharkovsky [7] which is also stated in [3]: If, for a map in C(I, I),
two ω-limit sets have a common cluster point from the same side then
their union is an ω-limit set. So, by Lemma 2.5 A is an ω-limit set since
both (ωV )∗ and (ωW )∗ are and have a point a∗ as a common cluster
point from side T . We have the situation described in Subcase 2.1.

Subcase 2.2.2. A = ωf (v) ∪ ωf (w) = S. Since any ω-limit set in S
is either nowhere dense or a finite union of non-degenerate intervals,
and since ωf (v)∩W = ∅ = ωf (w)∩V , both ωf (v) and ωf (w) are finite
unions of intervals. If ωf (v)∩ωf (w) is infinite then the two ω-limit sets
have an interval in common and the transitivity is easily proven. If the
intersection ωf (v) ∩ ωf (w) would be finite then the condition with the
T -side must be violated since the intersection contains a. �

Proof of Theorem 1.3. In the case when X = I the theorem is proved
in [3] (Theorem 3.2). It remains to consider the case when X = S. Let
{ω1, ω2, . . .} be a sequence of ω-limit sets converging in the Hausdorff
metric to a set A. Choosing a subsequence (if necessary) we may also
assume that there exists a point a, a side T of a and points an ∈ ωn,
an 6= a converging to a from T . As the original sequence converges
to A, the subsequence does as well. To finish the proof it remains
to use Theorem 1.2 and to show that

⋂∞
k=1

⋃∞
n=k ωn = A. Since we

consider Hausdorff metric and all the sets ωn are closed then the set A
is closed as well. Hence it is clear that

⋂∞
k=1

⋃∞
n=k ωn ⊃ A. Consider the

sequence of open sets {A1/n}∞n=1 where Aε := {x ∈ X; dist(x, A) < ε},
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dist(x, A) := inf{d(x, a); a ∈ A} and d is the metric on X, and note

that for every m there is a positive integer k such that
⋃∞

n=k ωn ⊂ A1/m.

Therefore
⋂∞

k=1

⋃∞
n=k ωn ⊂ A. �
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